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ABSTRACT

The use of Linear Feedback Shift Register functions in generating

exhaustive test case coverage for Very Large Scale Integrated circuits with

SCAN/SET capability is presented. Both deterministic and probabilistic

approaches to test pattern generation are discussed. A technique for

signature generation is presented with analysis of its effectiveness.

Also, a technique is described for consolidating the test pattern

generation and signature capture functions into a single test/detect

capability that requires less built-in hardware for implementation.
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1. INTRODUCTION

The ever increasing densities of digital Integrated Circuit (IC)

components have passed the point beyond which traditional testing methods

are no longer usable. In the first place, as IC densities increase with

little or no increase in the number of external Input/Output (I/0) pins, so

does the logic-to-pin ratios of the chips. This makes it more difficult to

figure out the appropriate input test patterns that will simultaneously

control the internal nodes and allow their logic states to be observed at

some I/O pin of the IC. Indeed, as the logic-to-pin ratios increase, it

becomes necessary to use sequences of test patterns in place of a single

test pattern to perform each controlltng/observing task. That is, for

complex IC chips the testing problem becomes more sequential in nature. It

is well known that Automatic Test Pattern Generation (ATPG) algorithms

perform with less efficiency and success rates when the degree of

sequentiality of the Device Under Test (DUT) is increased. Hence, even if

some major breakthrough were to occur in the area of ATPG algorithms, any

resultant gain in performance is likely to be lost due to the increased -

complexity of the problems being considered. Furthermore, all existing

ATPG algorithms require a precise (NOT equivalent) gate level description

for the DUT, since they all use fault models which are implementation

specific. Whereas such accurate circuit descriptions are available to the

component manufacturers, in general, end users do not have access to this

kind of proprietary data.

An even more Important but many times overlooked factor in choosing

test strategies for use in the VLSI domain, is the ratio of the testing
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costs to the overall system cost. It should be noted that VLSI implies far

more than a mere reduction in geometric dimensions of a digital circuit.

As complete systems/subsystems become integrated as a single component,

performing testing in the traditional ways would imply that the current

system testing costs will translate into future component testing costs.

This, of course, is an entirely unacceptable situation. For example, it

may be appropriate to test an entire Printed Circuit Board (PCB) using

expensive test equipment that can store and search through large volumes of

test related data. However, using the same approach to test a single VLSI

chip version of the same system would bring testing costs totally out of

proportion with the overall cost of the DUT itself. In addition, the

widespread use of digital systems in all aspects of our lives have

increased the importance of field testing. In many cases, digital systems

are being used by people who are not knowledgeable enough to suspect that a

faulty condition exists and make the proper Judgments to invoke appropriate

diagnostic procedures to detect and isolate the problem to the nearest

Field Replaceable Unit (FRU).

It is clear from the above discussion that a radically different

approach is needed for testing digital systems in the VLSI domain. Indeed,

the "difference" must be more than being just a clever technique that

enables existing (or improved) ATPG algorithms to perform better. That is,

our focus should not only be on improving algorithm efficiency, but we

should also improve the testability of VLSI designs through changes in

their implementation. A very good start has been made in this direction by

the introduction of Level Sensitive Scan Design (LSSD) 1I rules.
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Currently, several major digital systems manufacturers are using

(variations of) these rules in their designs. Using the LSSD rules enables

the designers to eliminate many potential timing problems and makes it

possible to implement a "Scan Path" whereby each and every individual

bi-stable element in the circuit becomes separately controllable and

observable. Generically, this is achieved by configuring the DUT such

that, for testing purposes, all of its latches become part of a single

shift register, called the scan register. The serial data input and output

terminals of the scan register are made accessible from two of the external

I/O pins of the device. Then, any combination of bit values can be loaded

into the scan latches by serially shifting the desired combination into the

scan register. The values stored in the scan latches act as input patterns

to the combinational part of the DUT. During testing, first the desired

bit pattern is shifted into the scan register. Next, the combinational

circuit outputs are latched (in parallel) into the scan register. Finally,

as the next bit pattern is being shifted in, the results of the previous

test become available at the output of the scan register, one bit at a

time. This technique, which is commonly referred to as the SCAN/SET

technique, reduces the problem of testing a complex digital system to that

of testing only the combinational part of its circuitry. However, apart

from increasing the controllability/observability of the internal nodes of

a system, SCAN/SET does not offer a new approach to the ATPG problem.

Given that modern VLSI systems are capable of operating at very high

clock rates, a natural extension of the SCAN/SET approach is to drop the

ATPG altogether and exercise the combinational part of a digital system
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exhaustively. Despite the potentially very large size of such

combinational circuits, exhaustive testing appears to be feasible. This

can be seen by observing that a multi-input/multi-output combinational

circuit consists of multiple single-output circuits, each of which may

receive inputs from only a subset of the bits of the scan register. For

example, a scan register may have several thousand bits but any

single-output logic cone may use, say, only 30 of these as its inputs.

Then, if a new input test pattern can be generated at every clock period,

applying all 230 bit permutations to such a logic cone would take less

than two minutes if the clock rate is 10 MHz. However, to achieve this it

is necessary that test results (i.e., combinational circuit output values)

should not be latched back into the scan register, as this prevents us from

generating a new test pattern with each clock. Instead, we can utilize a

separate "signature" register where test results can be accumulated. This

technique will be discussed later in detail.

The rest of this report is arranged as follows: Section 2 presents the

underlying theory and proposes a deterministic approach whereby exhaustive

testing of the combinational portion of a digital system is assured. This

section also presents a technique for generating/storing a signature for

interpreting the test results. Section 3 presents a probabilistic approach

where exhaustive testing may become possible with some probability of

success. The advantage of the probabilistic approach is that it avoids the

design specific computations that are necessary to implement the

deterministic approach. Then, Section 4 presents an extension to the

probabilistic approach whereby using an explicit signature register becomes

no longer necessary. The report ends with a conclusion section.
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2. EXHAUSTIVE TEST PATTERN GENERATION

Figure I depicts the general model for a digital system which has

SCAN/SET capability. To enable the generation of exhaustive input test

patterns for the individual logic cones, the serial data input to the scan

register will be tied to the serial output of a prime Linear Feedback Shift

Register (LFSR). A prime LFSR of degree n (i.e., has n bits) is capable of

generating all of the 2n-1 , non-zero n-bit permutations if it is started

in any non-zero state and 2n-l shifts are performed. Such LFSR functions

are known to exist for any degree n (e.g., see 121).

Definition 1: The Characteristic Polynomial, G(X), for an LFSR is given by

G(X) 1 + aX + aX+ aX + ... + a n  (1)
1 2 3n

where ai belong to {0,1} for all I < i < n, and "+" means EXCLUSIVE-OR.

Note:

Through the remainder of this report, the "+" sign appearing in symbolic

expressions will be used to mean EXCLUSIVE-OR (modulo 2 sum), unless

otherwise stated. Coefficients ai of the characteristic polynomial for

an LFSR indicate the bit positions (bit 1 is the leftmost one when the

shift direction is to the right) whose EXCLUSIVE-OR determines the next

value of the first bit position, when the next shift operation takes place.

Without any loss of generality, the combinational part of the circuit

shown in Fig. I can be considered as an s-input/i-output circuit, which is

made from m-many single output logic cones. Let "t" be the maximum number

of taps (inputs) that any single output logic cone may receive from the

scan register. Since G(X) generates all non-zero n-tuples which are
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Fig. 1. Logical equivalent of circuit with scan/set capability.
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shifted along the scan register, it follows that when the t-input taps of

any logic cone all fall within some consecutive n bits of the scan

register, that cone will be exercised under all possible non-zero

t-tuples. At this point we can assume that the missing all-zero t-tuple is

a special case that can be handled separately. Note that with each new

shift the entire scan register will change so that every consecutive set of

n bit positions will receive a new n-bit permutation not previously

encountered across those bits. Then, taking into account the length of the

scan register, the length of the input test sequence necessary for

exhaustive testing is

Is+ 2n-l (2)

Whereas this technique provides complete test case coverage for all

logic cones whose span (distance in number of bits of the scan register

between the first and last input tap positions) does not exceed n, we must

also consider the case when the span of a logic cone exceeds the degree of

the input LFSR. In this case, the first restriction that must be imposed

is that

s < 2n-1  (3)

This is necessary since the input LFSR will start repeating its output

sequence after 2n-1 shifts so that if s > 2n-1, then bits I and

i + 2n-Il will always have the same value for any i. Thus, let

s < 2n-l. To see how such a system may behave, consider the following

example:

Example: Let G(X) - I + X + X3 be the characteristic polynomial for an

LFSR whose serial outputs are shifted along a 23-1 - 7 bit scan

7



register. Assume that initA ally the LFSR and the scan register bits are

all set to zero, except for the output bit of the LFSR, which is set to 1.

Table I shows the values of the LFSR and the scan register after each

successive shift operation. It is seen that following proper

initialization of the scan register which occurs after s (s - 23-1)

shifts, the scan register attains 23-1 distinct states, after which it

starts to repeat itself.

Let M be the (2 n-l) x (2n-1) matrix whose rows corresponds to the

rows of Table I, starting with row 2n-l (for the above example, n-3).

Then, the following properties can be stated:

- The rows of M represent all of the distinct states of the

scan register. The same is also true for the columns of M.

- Each row or column of M has exactly 2n, 1-bits and 2n-ln,

O-bits.

- The n-bit columns of any consecutive n rows of H correspond to all

non-zero n-tuples.

From Table I we can observe that tap positions 1, 2 and 7 of the scan

register will receive all non-zero 3-tuples even'though their span is

7 (7-1+1). On the otherhand, the same is not true for positions 1, 2 and

4 even though their span is smaller (i.e., 4). Furthermore, we observe

that positions 1, 2 and 4 see only those input 3-tuples that have even

parity (i.e., 000, 110, 101, 011). These observations can be formalized by

the following theorems which are stated without their proofs:

Theorem 1: Let R {rlr 2 ....,rt}, 1 < rl 2n-1 , and n > t, be

a set of tap positions along a scan register which is driven by a degree n

8



TABLE I

SHIFT SEQUENCES FOR G(X) 1 + X + K3

SHIFT CYCLE LFSR SCAN REGISTER

0 001 0000000
1 100 1000000
2 110 0100000
3 Ill 0010000
4 011 1001000
5 101 1100100
6 010 1110010
7 001 0111001
8 100 1011100
9 110 0101110
10 111 0010111
11 Oil 1001011
12 101 1100101
13 010 1110010
14 001 0111001

9



prime LFSR function, G(X). The set R of tap positions receive all possible

2t-1, non-zero t-tuples if, and only if, no proper subset of columns

rl,r 2 ,...rt of H are linearly dependent. Furthermore, only even

parity bit permutations will appear across any subset of tap positions

whose corresponding columns in the M matrix are linearly dependent. (A set

of columns of H form a linearly dependent set if, and only if, their

bitwise EXCLUSIVE-OR is equal to all zeros.)

Lemma 1: If the set R of tap positions are linearly independent and t < n,

then the all-zero t-tuple will also appear across these tap positions.

Theorem 2: Let A be an n X (2n-l) matrix whose n rows correspond to any

consequtive n rows of H. Then, a set of columns of A are linearly

dependent if, and only If, the corresponding set of columns of M are also

linearly dependent. Hence, linear dependence can be tested using any n

successive rows of M.

The above theorems establish the necessary conditions for a logic cone

with t-taps to receive exhaustive input patterns. Furthermore, Theorem 2

provies a straightforward method for testing a given set of tap positions

for compliance with Theorem 1. Thus, for any given set of tap positions

one can search through the known prime LFSR functions until one that

satisfies the linear independence condition is found. Using that LFSR will

enable the exhaustive testing of the combinational part of the DUT.

2.1 Interpreting the Test Results

As each test pattern appears across the scan register, the individual

logic cones produce their corresponding outputs. Let there be m (m < s)

logic cones. These output values can be captured and "merged" with the

10
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previous values using an m-bit parallel input signature register. A

parallel input signature register is obtained by adding EXCLUSIVE-OR gates

between each stage of a prime LFSR. This is illustrated in Fig. 2. In

this way, the next state of the signature register is determined by the

result of taking the EXCLUSIVE-OR of the next state of a prime LFSR and the

incoming parallel data. Thus, if the parallel inputs to the signature are

constantly kept at the logic 0 levels, the signature register behaves like

an ordinary prime LFSR. On the other hand when the parallel inputs are

obtained from the outputs of a combinational circuit, the signature

register acts as a hashing circuit that combines previous results with the

new one in a pseudo-random manner. Since the hashing is dependent on the

parallel input values, a different next state (and hence, a different final

state) will result for every different sequence of combinational circuit

output values. This enables the detection of circuit failures by comparing

the final state (signature) of the signature register to its final state

when there are no faults. The fault-free (good network) signature can be

determined via simulation or experimenting with several copies of the same

network.

Unfortunately, the signature mechanism is not foolproof since it is

possible that a fault condition may affect the values of the intermediate

states of that register but the final signature may be the same as that for

the good network. However, the probability for this to happen can be

computed and controlled. Consider the state table for a signature register

which has m bits of storage and m parallel inputs. This table has 2m

rows and 2m columns, corresponding to all possible state and parallel

|1
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Fig. 2. A 4-bit parallel-input signature register.
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input encodings, respectively. Let SI,S 2 ,S3 ,...,Si and

I1,I2,I3,...,Ii be labels representing the encodings for the rows

and columns, respectively, such that subscript "I" represents the

particular encoding for that row or column. Let g(Sj,Ij) be the next

state of the signature register when the present state and input are Si

and Ij, respectively. It is clear that entries in column 10 correspond

to the next states of a prime LFSR. Thus, g(SiIo), I < I < 2,

comprise all non-zero encodings of m bits and g(SoJ O ) - So. That

is, all possible state encodings are present in column 10. Entries in

any other column Ij are determined by

g(SiIj) - g(SiJ O ) + Ij (4)

It is then obvious that all possible state encodings are present in every

row Si or column Ij of the state table. This implies that the

signature register corresponds to a fully-connected sequential machine

which also has self-loops on every state.

Now, assume that for the fault-free case, the signature register is

started in state Sa and after a test sequence of length k, its final

state becomes Sb . We can formulate the number of possible parallel input

sequences of length "k" that will result in the same final state if the

initial state is Sa . There is only one i-bit input sequence of length k.

(say, It) such that g(Sa,It) Sb . For a desired input sequence of

length 2, we can use the first one (say, If) to transfer to any one of

the 2 states and then use the appropriate sequence of length k to reach

state Sb . Thus, there are 2m input sequences of length 2 to reach

state Sb from state Sa . Continuing in this fashion it can be shown

that there are

13



N(m,k) - 2m(k-l) (5)

input sequences of length "k" between states Sa and Sb. On the other

hand, the total number of length "k" input sequences of m-tuples is 2sk .

Therefore, the probability that a randomly selected input sequences will

also bring the signature register into the same final state Sb , is given

by

2m(k-l)
P(m,k) - -2 (6)

It can be shown that Eq. (6) is still valid when the number of bits of the

register Is increased to become greater than the number of parallel inputs

(i). Note that even when a failure occurs, it means that only a few faults

will not be detected.

The signature technique can also be employed using a serial input

signature register. Thus, if the combinational circuit outputs are

captured In parallel by the scan register and shifted out into

a single input signature register while the next test pattern is being

loaded into the scan register, fault detection probability remains the

same. However, this technique would result in longer test times as well as

requiring a different mechanism for generating the desired test patterns.

3. PROBABILISTIC APPROACH TO EXHAUSTIVE PATTERN GENERATION

Being motivated by a desire to find a general solution to the VLSI

self-testing problem such that applicability of the solution to specific

designs does not require individual analysis, the following question is

investigated:

14



- Given G(X), a prime (LFSR) of degree n, whose output feeds a scan

register with s (s < 2n-l) bits and given an arbitrarily selected set of

tap positions R - {rl,r 2 ,...,rt}, where t < n, what is the probability

that some proper subset of the t-taps will be linearly independent?

Solution: Assume that k-I of the t-taps form a linearly independent set.

We can first formulate the probability that a randomly selected kth tap

will form a linearly dependent set with some subset of the k-I tap

positions. There are 2k-li non-empty subsets of the k-i taps. Since

s < 2n-1 , no pair of taps can be linearly dependent. Therefore, the

number of subsets of the k-i taps that tap rk may be linearly dependent

with is 2k--(k-i), or, 2k-l-k. Also, since k-i many taps have already

been selected, there are 2n-i-(k-1) - 2n-k tap positions where rk can

be selected from. Therefore, the probability that rk will be linearly

dependent with some subset of the first k-I taps is given by -

2n kk - 2(k- 1) 
+  k 2n - 2(k-1)P(n,k)' ==(7) •

2- k 2- k

Since P(n,k)' has been formulated assuming that the first k-i taps are

linearly independent, the probability that the t-taps are also linearly

independent is given by

Prob(n,t) - P(n,l)' x P(n,2)' x ... x. P(n,t)' (8)

and the probability that some subset of the t-tap positions are linearly

dependent is

F(n,t) I 1 - Prob(n,t) (9)

15



Table II lists F(n,t) for various values of n and t. From Table II it is

observed that the probability of picking a linearly dependent set of tap

positions depends on n-t, so that given the maximum number of tap positions

(t) for any logic cone, we can pick the degree (n) of the LFSR that will

produce a probability value less than some arbitrary threshold.

Furthermore, we can improve upon the values shown in Table II by employing

more than one independent LFSR to generate the scan patterns. This way if

the output sequences from q independent prime LFSR generators of degree n

are cascaded and fed to the scan register, a set of t-tap positions which

form a linearly dependent set under LFSRi, may not be linearly dependent

under some other generator, say, LFSRj. In this case, the probability

that all of the generators will fail to exercise those tap positions is

given by

F(n,t,q) " F(n,t)q (10)

Table III lists the values of F(n,t,q) in terms of n-t and q. The

advantage of using more than one LFSR is that this may lead to a shorter

test period. For example, if t - 20, then we can use 4 LFSRs of degree 21,

which results in the probability of failure - 0.03. In this case the test

length will be 4 x 221 - 223. However, to achieve the same failure

probability using a single LFSR would require n-t > 5, or n - 25. This

would result in a test sequence whose length is 225.

The above presentation shows that it is possible to adopt a

probabilistic approach to the selection of a single (or multiple LFSR)

function to exercise the combinational logic under all possible input

combinations. Whereas this approach carries the natural risk of finding

16



3 TABLE Il

VALUES OF F(n,t)

LFSR n-t
DEGREE 0 1 2 3 4 5

n. x 10 0.69 0.40 0.20 0.09 0.04 0.02
11 0.70 0.41 0.21 0.10 0.05 0.02

K12 0.71 0.41 0.22 0.11 0.05 0.02
13 0.71 0.42 0.22 0.11 0.06 0.03
14 0.71 0.42 0.23 0.12 0.06 0.03

20 0.71 0.42 0.23 0.12 0.06 0.03

17
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TABLE III

VALUES OF F(n,tq)

NO. OF n- t
LFSRs 0 1 2 3 4 5

q " 1 0.71 0.42 0.23 0.12 0.06 0.03
2 0.51 0.18 0.05 0.01 0.00 0.00
3 0.36 0.08 0.01 0.00 0.00 0.00
4 0.26 0.03 0.00 0.00 0.00 0.00
5 0.18 0.01 0.00 0.00 0.00 0.00 -

6 0.13 0.01 0.00 0.00 0.00 0.00
7 0.09 0.00 0.00 0.00 0.00 0.00
8 0.07 0.00 0.00 0.00 0.00 0.00

i.
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oneself on the undesirable side of the probability distribution, it has the

advantage of being straightforward and does not require special analysis of

the given circuit. Furthermore, as far as permissible, the test length can

be made longer by choosing a higher degree n for the LFSR to increase the

chances of success. It should also be remembered that even when a logic

cone may not be fully exercised, it may still be fully tested by the

portion of the exhaustive patterns that it may have received.

4. EXTENSION/CONSOLIDATION OF THE PREVIOUS TECHNIQUES

Let us examine more closely the state transitions in a parallel input

signature register. Assume that the parallel input combinations received

by the signature register have a uniform probability distribution. From

Eq. (4) we have the next state of the signature register given by

Sb - g(Sa9I g(Sa,1 0 ) +1j

where Sa is the current state and Ii is the current i-bit parallel

input. For any possible value of g(Sa,10 ) there exists exactly one

value of Ii such that Ij - g(Sa O) , that is, Sb - Ss. Thus,

during a test sequence of length "k", the signature register may go through

some set of states more than once. Let P(k,r) represent the probability

that exactly r distinct states have been visited after "k" shifts. Then,

one of the following two conditions must be true:

I - Exactly r distinct states have been visited during the first k-I

shifts and the state after the rth shift is a repeat of some state already

visited, or

2 - Exactly r-I distinct states have been visited during the first

k-I shifts and a previously unvisited state is reached with the kth shift.

Then, we can write

19
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P(k,r) - P(k-l,r) * P(R) + P(k-l,r-1) * P(mR) (11)

where, P(R) and P(-R) represent the probabilities that the next state after

the kth shift does or does not belong to the previously visited r or r-l

states, respectively. It is obvious that

P(R) - r and P(-R) = 2m r +1 (12)2m  2a

Furthermore, since the signature register has already visited one distinct

state (i.e., its initial state) before any shifting is done, we have

P(O,I) -I and P(i,O) - 0 for any i > 0. (13)

Equation (11) represents a system of equations which can be solved using a

computer program to compute P(l,l), P(l,2),P(I,3),.... for various

different values of m. These can then be used to compute the expected

value of the number of distinct states visited in "k" shifts of an r-bit

signature register, using

k

e(k) - r x P(k,r) (14)
r !_

An alternate formulation for e(k) is also given by

2m  e(t-l)
e(i) e(i-1) + (15)2m

which should be computed for i = 1,2,3,...,k, with the boundary condition

that e(O) - 1. Evaluating either Eq. (14) or (15) reveals that if the test

length "k" is chosen to be a multiple of 2m, i.e., k - hx2a, then the

percentage of total states visited is independent of m. This is shown in

Table IV.

20
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TABLE IV

PERCENTAGE OF TOTAL (2) STATES VISITED IN "k" SHIFTS

TEST value of h for test length = h x
LENGTH (k) 1/4 1/2 1 2 3 4

m - 32 21.88 40.62 62.50 84.38 93.75 96.88
128 22.66 39.84 63.28 85.94 94.53 97.66
512 22.27 39.45 63.28 86.33 94.92 98.05
1024 22.17 39.36 63.18 86.43 95.02 98.14
2048 22.12 39.36 63.23 86.47 95.02 98.14
4096 22.12 39.36 63.21 86.45 95.02 98.17 L

2.
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As can be seen from Table IV, a signature register will go through 98%

of all of its states if it receives 4x2m , u-bit parallel inputs which are

selected with uniform distribution. Furthermore, if the input patterns are

uniformly distributed, then any subset of bits of the entire signature

register are expected to go through the same percentage of combinations

applicable across that subset. This can be seen from Eq. (4) and noting

that if the probability distribution of m-tuples Ij is independent from

the probability distribution of m-tuples g(SIIo), when both

distributions are uniform, then the probability distribution of

g(Si,Ij) is also uniform. This makes the signature register itself

become a good candidate for use in generating the input test patterns

applied to the combinational logic cones. To achieve this, one would

eliminate the signature register all together and load the combinational

circuit outputs, in parallel, into the scan register. Then, if the maximum

number of taps for any logic cone is t, the required test length would be

selected as 4x2
t , for an expected 98% exhaustive coverage of all t-tuples

for any logic cone. However, there is an obvious flaw in this argument

since, in practice, the output values produced by the combinational logic

are not uniformly distributed. Indeed, in many cases an m-input/m-output

combinational circuit may produce much less than 2" distinct output

m-tuples in response to all possible input m-tuples. This is because

*several different input m-tuples may generate the same output values. Let

the number of distinct combinational circuit output m-tuples be q. This

means that the state transitions of the signature register will be confined

to q columns of its state table and, in effect, from each internal state

22
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only q of the total states will be accessible. Then, Eq. (15) which gives

the expected number of distinct states that will be visited, must be

modified as

e(i) - e(i-1) + 2 - e(i-1) x q  (16)

2" 2"

which indicates that fewer distinct states of the signature register will

be visited. The solution to this problem is to pass the sequence of

m-tuples through what might be called a "pattern amplifier" circuit which

maps a sequence of q-many m-tuples into another sequence of length "1",

while preserving the information content of the input m-tuples. This of

course implies that the pattern amplifier circuit will be a sequential

circuit, since repeated occurrences of the same input m-tuple must be

mapped Into different output m-tuples. One simple way to implement such a

circuit is to use a hashing circuit whose outputs will be controlled by the

input a-tuples. The hashing circuit can be Implemented using a prime LFSR

whose degree should be comparable to 2/q, so that sufficiently large

numbers of output i-tuples can be generated. Thus, If we let

QIQ2,Q3 ,...,Qp be the Individual bits of a prime LFSR and

DI,D2,D3,....Da be the a-outputs from the combinational circuit, the

pattern amplifier circuit can be implemented using

1[ D1  Q1O

D2 - D2 + Q,

D' D + Q

I p1 Q

;+2 p+2 + Q2

etc.
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This is illustrated In Fig. 3. Finally, Fig. 4 illustrates the system

architecture to implement the test technique described in this section.

Note that an input LFSR is no longer needed to feed the scan register since

the scan register already has its own feedback signal defined as part of

its role as a signature register. The hashing LFSR used in the pattern

amplifier circuit must be chosen to be independent of any other circuit in

the system in order to prevent adverse effects that may result otherwise.

To implement the technique described in this section we can use a

modified scan-latch with multiple clocks, as shown in Fig. 5. The

advantage of using this latch is that (1) all test related circuitry is

placed along the L2 latch, away from the inputs of the LI latch, which is

used to implement the original functions of the DUT; (2) an independent

scan-path is retained so that specific test patterns can be fed to the

circuit, if desired.

5. CONCLUSIONS

It is no longer Justifiable to use the area of a chip exclusively for

implementing the primary functions of a circuit. As we move into the VLSI

domain, the testability requirement becomes at least as important as any

other requirement. This report has presented a basic technique and some

variations that would help solve testing related problems for VLSI

components and/or digital systems that use such components. It is

inevitable that this or any similar technique will be met with skepticism

and resistance by some designers. However, it is the author's firm belief

that, in the long run, techniques having the same flavor as the ones

described here will be the predominant ones used in building

reliable/testable digital systems.

24



DI D2  DP DP+1  Dp..2  etc.

O2 >*~

DID %1 ;2ec

Fi.3 ahn h obnainlcrutotus

I2
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COMBINATIONAL CIRCUIT

1D 102D3,
I HASHING CIRCUIT

HASHING 1II
LFSR D0 1iDm A

Fig. 4. System architecture f or randomized self-test technique.
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Fig. 5. Modified scan-latch vith signature capability.
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On the other hand, it should not be thought that what is presented

here is a complete and universal solution to all of our testing needs.

There are many areas (such as memory testing) where other test methods must

* be used to do the Job.
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